Experimental Evaluation of Synergy-Based In-Hand Manipulation

Umberto Scarcia, Lorenzo Moriello, Alberto Pepe, Antonio Mauro Galiano, Gianluca Palli, Claudio Melchiorri
Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione "Guglielmo Marconi"
Alma Mater Studiorum Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy
{umberto.scarcia2, lorenzo.moriello2, alberto.pepe3, antoniomauro.galiano, gianluca.palli, claudio.melchiorri}@unibo.it

Fanny Ficuciello, Bruno Siciliano
Dipartimento di Ingegneria Elettrica e Tecnologie dell’Informazione
Università degli Studi di Napoli Federico II
Via Claudio 21, 80125 Napoli, Italy
{fanny.ficuciello, bruno.siciliano}@unina.it

Abstract
In this paper, the goal of extending the results obtained in [1] considering also tasks involving internal manipulation is addressed. The main idea is to enrich the experiments by requiring the subjects to reproduce not only the most natural grasping configuration belonging to the considered grasping taxonomy, but also the boundary configurations for those grasps that admit internal manipulation. The final goal is to represent grasp and manipulation tasks as trajectories connecting suitable configuration sets in the synergy subspace.

Index Terms
Postural Synergies, Robotic Grasping, Internal Manipulation, Robotic Hands

I. INTRODUCTION

The problem of robotic grasping and manipulation involves many complex issues, and the theoretical approach based on the research of optimal solutions results both too complex to be implemented in practice with the actual technologies (sensors and computational capability) and not reliable due to the simplified modeling of the real system behavior [2]. On the other hand, neuroscience studies point out the natural ability of humans to unconsciously find sub-optimal solutions to those problems. Moreover, the observation of human behavior shows the presence of coordinated motions among the degrees of freedom of the fingers in common to many different grasping postures. These intuitions lead us to consider the possibility to mathematically extract the predominant postural synergies from human behavior and map them to different robotic hand kinematics. In order to prove this concept, in [1] a method based on the acquisition of contact points related to a set of 36 human grasping tasks (defined in [3]) performed by different test subjects has been described. Since data were collected from subjects with hands that have different dimensions, it was necessary to adopt a normalization procedure to a common kinematic structure, in our case of the UB-Hand IV (University of Bologna Hand version IV). Then through kinematic inversion the scaled data were transformed from the Cartesian space to the robotic hand’s joint space. Finally the elaborated data have been investigated using Principal Components Analysis (PCA) showing that our assumption on the existence of motion patterns are confirmed by the presence of dominant eigenvalues. We have found that the subspace generated by the eigenvectors associated with the first three highest eigenvalues is enough to let the robotic hand reproduce the set of considered grasping configurations with a sufficient accuracy in relation to the grasping task. This result allows to implement a grasp planner based on defining a trajectory within the obtained subspace. The trajectory is basically the interpolation between points representing

The starting point in this work is the observation that there are grasping postures that admit internal manipulation, as in the example depicted in Fig. 1. For this reason we want to enlarge the database of acquired postures adding also these hand configurations. Therefore the experiments required to the test subjects are extended to not only reproduce the most natural grasping posture for each element of the taxonomy, but also the maximum and minimum bounds for those that admit internal manipulation without loosing the contact between fingertips and the object.

The PCA is recomputed on the extended database and then the eigenvalues are examined. It is of interest to evaluate how many eigenvectors are needed to reproduce with a sufficient precision the new set of postures. The task planner must be modified including the capability to generate trajectories within the synergy subspace that connects points representing
the rest position, a defined grasping posture and the points relative to the manipulation of the same grasping type. In the final version of the paper, this activity will be described in details, and the experimental results of this algorithm applied to the UB Hand IV reported along with the evaluation of the performance obtained by examining the success rate over the considered task set.

REFERENCES

